逐步匹配多副点云数据

本实例是使用迭代最近法算法逐步实现地对一系列点云进行两两匹配,他的思想是对所有点云进行变换,使得都与第一个点云统一坐标系中,在每个连贯的有重叠的点云之间找出最佳的变换,并积累这些变换到全部的点云,能够进行ICP算法的点云需要粗略的预匹配,并且一个点云与另一个点云需要有重叠的部分。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
#include <pcl/make_shared.h>  // for pcl::make_shared
#include <pcl/point_types.h>
#include <pcl/point_cloud.h>
#include <pcl/point_representation.h>
#include <pcl/io/pcd_io.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/filters/filter.h>
#include <pcl/features/normal_3d.h>
#include <pcl/registration/icp_nl.h>
#include <pcl/registration/transforms.h>
#include <pcl/visualization/pcl_visualizer.h>

//引用命名空间
using pcl::visualization::PointCloudColorHandlerGenericField;
using pcl::visualization::PointCloudColorHandlerCustom;

//预定义数据类型
typedef pcl::PointXYZ PointT;
typedef pcl::PointCloud<PointT> PointCloud;
typedef pcl::PointNormal PointNormalT;
typedef pcl::PointCloud<PointNormalT> PointCloudWithNormals;

//申明一个全局可视化对象变量,定义左右视点分别显示配准前和配准后的结果点云
pcl::visualization::PCLVisualizer *p;
int vp_1, vp_2;

//申明一个结构提方便对点云以文件名和点云对象进行成对处理和管理点云,处理过程中可以同时接受多个点云数据
struct PCD
{
PointCloud::Ptr cloud;//点云共享指针
std::string f_name;//文件名称

PCD() : cloud (new PointCloud) {};
};
//文件比较处理
struct PCDComparator
{
bool operator () (const PCD& p1, const PCD& p2)
{
return (p1.f_name < p2.f_name);
}
};


//以<x,y,z,curvature>形式定义一个新的点表示
class MyPointRepresentation : public pcl::PointRepresentation <PointNormalT>
{
using pcl::PointRepresentation<PointNormalT>::nr_dimensions_;
public:
MyPointRepresentation ()
{
// 定义点的维度
nr_dimensions_ = 4;
}

// 重载copyToFloatArray方法将点转化为四维数组
virtual void copyToFloatArray (const PointNormalT &p, float * out) const
{
// < x, y, z, curvature >
out[0] = p.x;
out[1] = p.y;
out[2] = p.z;
out[3] = p.curvature;
}
};


//左视图用于显示未匹配的源和目标点云
void showCloudsLeft(const PointCloud::Ptr cloud_target, const PointCloud::Ptr cloud_source)
{
p->removePointCloud ("vp1_target");
p->removePointCloud ("vp1_source");

PointCloudColorHandlerCustom<PointT> tgt_h (cloud_target, 0, 255, 0);
PointCloudColorHandlerCustom<PointT> src_h (cloud_source, 255, 0, 0);
p->addPointCloud (cloud_target, tgt_h, "vp1_target", vp_1);
p->addPointCloud (cloud_source, src_h, "vp1_source", vp_1);

PCL_INFO ("Press q to begin the registration.\n");
p-> spin();
}


//右边显示配准后的源和目标点云
void showCloudsRight(const PointCloudWithNormals::Ptr cloud_target, const PointCloudWithNormals::Ptr cloud_source)
{
p->removePointCloud ("source");
p->removePointCloud ("target");


PointCloudColorHandlerGenericField<PointNormalT> tgt_color_handler (cloud_target, "curvature");
if (!tgt_color_handler.isCapable ())
PCL_WARN ("Cannot create curvature color handler!");

PointCloudColorHandlerGenericField<PointNormalT> src_color_handler (cloud_source, "curvature");
if (!src_color_handler.isCapable ())
PCL_WARN ("Cannot create curvature color handler!");


p->addPointCloud (cloud_target, tgt_color_handler, "target", vp_2);
p->addPointCloud (cloud_source, src_color_handler, "source", vp_2);

p->spinOnce();
}

////////////////////////////////////////////////////////////////////////////////
/** \brief Load a set of PCD files that we want to register together
* \param argc the number of arguments (pass from main ())
* \param argv the actual command line arguments (pass from main ())
* \param models the resultant vector of point cloud datasets
*/
void loadData (int argc, char **argv, std::vector<PCD, Eigen::aligned_allocator<PCD> > &models)
{
std::string extension (".pcd");
// 第一个参数是命令本身,所以要从第二个参数开始解析
for (int i = 1; i < argc; i++)
{
std::string fname = std::string (argv[i]);
// PCD文件名至少为5个字符大小字符串(后缀.pcd已经占据了四个字符)
if (fname.size () <= extension.size ())
continue;

std::transform (fname.begin (), fname.end (), fname.begin (), (int(*)(int))tolower);

//检查参数是否为一个pcd后缀的文件
if (fname.compare (fname.size () - extension.size (), extension.size (), extension) == 0)
{
// 加载点云并保存在总体的点云列表中
PCD m;
m.f_name = argv[i];
pcl::io::loadPCDFile (argv[i], *m.cloud);
//从点云中移除NAN点
std::vector<int> indices;
pcl::removeNaNFromPointCloud(*m.cloud,*m.cloud, indices);

models.push_back (m);
}
}
}


////////////////////////////////////////////////////////////////////////////////
/** \brief Align a pair of PointCloud datasets and return the result
* \param cloud_src the source PointCloud
* \param cloud_tgt the target PointCloud
* \param output the resultant aligned source PointCloud
* \param final_transform the resultant transform between source and target
*/
//匹配实现,其中参数有输入一组需要配准的点云,以及是否需要下采样,其他参数输出配准后的点云以及变换矩阵
void pairAlign (const PointCloud::Ptr cloud_src, const PointCloud::Ptr cloud_tgt, PointCloud::Ptr output, Eigen::Matrix4f &final_transform, bool downsample = false)
{
//
// Downsample for consistency and speed
// \note enable this for large datasets
PointCloud::Ptr src (new PointCloud);//存储滤波后的源点云
PointCloud::Ptr tgt (new PointCloud);//存储滤波后的目标点云
pcl::VoxelGrid<PointT> grid;//滤波处理对象
if (downsample)
{
grid.setLeafSize (0.05, 0.05, 0.05);
grid.setInputCloud (cloud_src);
grid.filter (*src);

grid.setInputCloud (cloud_tgt);
grid.filter (*tgt);
}
else
{
src = cloud_src;
tgt = cloud_tgt;
}


// 计算表面法线和曲率
PointCloudWithNormals::Ptr points_with_normals_src (new PointCloudWithNormals);
PointCloudWithNormals::Ptr points_with_normals_tgt (new PointCloudWithNormals);

pcl::NormalEstimation<PointT, PointNormalT> norm_est;
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ> ());
norm_est.setSearchMethod (tree);
norm_est.setKSearch (30);

norm_est.setInputCloud (src);
norm_est.compute (*points_with_normals_src);
pcl::copyPointCloud (*src, *points_with_normals_src);

norm_est.setInputCloud (tgt);
norm_est.compute (*points_with_normals_tgt);
pcl::copyPointCloud (*tgt, *points_with_normals_tgt);

//
// Instantiate our custom point representation (defined above) ...
MyPointRepresentation point_representation;
// ... and weight the 'curvature' dimension so that it is balanced against x, y, and z
float alpha[4] = {1.0, 1.0, 1.0, 1.0};
point_representation.setRescaleValues (alpha);

//
// Align,配准
pcl::IterativeClosestPointNonLinear<PointNormalT, PointNormalT> reg;//配准对象
reg.setTransformationEpsilon (1e-6);//设置收敛判断条件,越小精度越大,收敛也就越慢
// Set the maximum distance between two correspondences (src<->tgt) to 10cm大于此值的点对不做考虑
// Note: adjust this based on the size of your datasets
reg.setMaxCorrespondenceDistance (0.1);
// Set the point representation,设置点表示
reg.setPointRepresentation (pcl::make_shared<const MyPointRepresentation> (point_representation));

reg.setInputSource (points_with_normals_src);//设置源点云
reg.setInputTarget (points_with_normals_tgt);//设置目标点云



//
// Run the same optimization in a loop and visualize the results
Eigen::Matrix4f Ti = Eigen::Matrix4f::Identity (), prev, targetToSource;
PointCloudWithNormals::Ptr reg_result = points_with_normals_src;
reg.setMaximumIterations (2);//设置最大的迭代次数,即每迭代两次就认为收敛,停止内部迭代
for (int i = 0; i < 30; ++i)//手动迭代,每手动迭代一次,在配准结果视口对迭代的最新结果进行可视化
{
PCL_INFO ("Iteration Nr. %d.\n", i);

// save cloud for visualization purpose
points_with_normals_src = reg_result;

// Estimate
reg.setInputSource (points_with_normals_src);
reg.align (*reg_result);

//accumulate transformation between each Iteration
Ti = reg.getFinalTransformation () * Ti;

//if the difference between this transformation and the previous one
//is smaller than the threshold, refine the process by reducing
//the maximal correspondence distance
if (std::abs ((reg.getLastIncrementalTransformation () - prev).sum ()) < reg.getTransformationEpsilon ())
reg.setMaxCorrespondenceDistance (reg.getMaxCorrespondenceDistance () - 0.001);

prev = reg.getLastIncrementalTransformation ();

// visualize current state
showCloudsRight(points_with_normals_tgt, points_with_normals_src);
}

//
// Get the transformation from target to source
targetToSource = Ti.inverse();

//
// Transform target back in source frame
pcl::transformPointCloud (*cloud_tgt, *output, targetToSource);

p->removePointCloud ("source");
p->removePointCloud ("target");

PointCloudColorHandlerCustom<PointT> cloud_tgt_h (output, 0, 255, 0);
PointCloudColorHandlerCustom<PointT> cloud_src_h (cloud_src, 255, 0, 0);
p->addPointCloud (output, cloud_tgt_h, "target", vp_2);
p->addPointCloud (cloud_src, cloud_src_h, "source", vp_2);

PCL_INFO ("Press q to continue the registration.\n");
p->spin ();

p->removePointCloud ("source");
p->removePointCloud ("target");

//add the source to the transformed target
*output += *cloud_src;

final_transform = targetToSource;
}


/* ---[ */
int main (int argc, char** argv)
{
//存储管理所有打开的点云
std::vector<PCD, Eigen::aligned_allocator<PCD> > data;
loadData (argc, argv, data);//加载所有点云到data中

// Check user input,检查输入
if (data.empty ())
{
PCL_ERROR ("Syntax is: %s <source.pcd> <target.pcd> [*]", argv[0]);
PCL_ERROR ("[*] - multiple files can be added. The registration results of (i, i+1) will be registered against (i+2), etc");
return (-1);
}
PCL_INFO ("Loaded %d datasets.", (int)data.size ());

// Create a PCLVisualizer object,创建PCL可视化对象
p = new pcl::visualization::PCLVisualizer (argc, argv, "Pairwise Incremental Registration example");
p->createViewPort (0.0, 0, 0.5, 1.0, vp_1);//用左窗口创建视口vp_1
p->createViewPort (0.5, 0, 1.0, 1.0, vp_2);//用右窗口创建视口vp_2

PointCloud::Ptr result (new PointCloud), source, target;
Eigen::Matrix4f GlobalTransform = Eigen::Matrix4f::Identity (), pairTransform;

for (std::size_t i = 1; i < data.size (); ++i)//循环处理所有点云
{
source = data[i-1].cloud;//连续配准
target = data[i].cloud;//相邻两组点云

// 左视口可视化为配准的源和目标点云
showCloudsLeft(source, target);
//调用子函数完成一组点云的配准,temp返回配准后两组点云在第一组点云坐标下的点云
PointCloud::Ptr temp (new PointCloud);
PCL_INFO ("Aligning %s (%zu) with %s (%zu).\n", data[i-1].f_name.c_str (), static_cast<std::size_t>(source->size ()), data[i].f_name.c_str (), static_cast<std::size_t>(target->size ()));
//返回从目标点云target到source的变换矩阵
pairAlign (source, target, temp, pairTransform, true);

//transform current pair into the global transform,把当前两两配准后的点云temp转化到全局坐标系下返回result
pcl::transformPointCloud (*temp, *result, GlobalTransform);

//update the global transform,把当前两组点云之间变换更新全局变换
GlobalTransform *= pairTransform;

//save aligned pair, transformed into the first cloud's frame
//保存转换到第一个点云坐标下的当前配准后的两组点云result到文件i.pcd
std::stringstream ss;
ss << i << ".pcd";
pcl::io::savePCDFile (ss.str (), *result, true);

}
}

手动迭代过程示例:


配准的结果如下:


感谢您的阅读。 🙏 关于转载请看这里